ПЕРЕЧЕНЬ ТИПОВЫХ УСЛУГ, ОКАЗЫВАЕМЫХ АЦКП ДФИЦ РАН, виды проводимых исследований и порядок определения их стоимости.

Перечень услуг, оказываемых АЦКП ДФИЦ РАН

№ п/п	Наименование услуг
1	Обеспечение оценки качества и оптимизации технологий получения полупроводниковых и тонкопленочных структур для элементной базы оптоэлектроники, для устройств памяти, люминесцентных и светодиодных наноматериалов, систем отображения информации и др.
2	Спектроскопическое исследование структурно-динамических и молекулярно-релаксационных свойств ионных электролитных жидкофазных систем для химических источников тока и литий-ионных аккумуляторов нового поколения.
3	Комплексные физико-химические исследования термальных вод.
4	Исследование кинетики роста и поверхностных свойств тонкопленочных структур, а также наноструктур, углеродных материалов и оксидных систем (как проводящих, так и непроводящих образцов).
5	Изучение морфологии и определение хим. состава различных поверхностных структур (как проводящих, так и непроводящих образцов).
6	Исследования органических и неорганических веществ и материалов в жидком, твердом и газообразном состоянии методами ИК- и КР спектроскопии, в т. ч. под влиянием внешних воздействий (температур, электрических полей)
7	Изучение физико - химических свойств жидких и твердых веществ методом спектрофотометрии в УФ- ИК- и видимом диапазоне длин волн от 190 до 3300 нм.
8	Исследование спектров поглощения света в ультрафиолетовой и видимой области, люминесцентный анализ кристаллических материалов, композитных, керамических и многокомпонентных структур, полимеров, биологических объектов и пищевых продуктов
9	Качественный, количественный и кристаллографический анализ порошков, керамики, поликристаллов и тонких пленок, объектов окружающей среды, природных ресурсов, химикатов, черных, цветных металлов, фарм. препаратов методом рентгеновской дифрактометрии
10	Определение анионов и катионов в водных растворах, органических и неорганических соединений; определение содержания фторид-, хлорид-

, нитрит-, фосфат-, и сульфат- ионов в пробах питьевой, минеральной,

столовой, лечебно – столовой, природной и сточной воды

- Измерение содержания металлов в природных водах и технологических растворах; анализ жидких проб различного происхождения и состава на уровне концентраций, измеряемых в мкг/л нг/л; определение металлов As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Sn, Zn (кислоторастворимые формы) в почвах и донных отложениях; определение металлов в воздухе рабочей зоны и выбросах в атмосферу промышленных предприятий; измерение массовой доли As, B, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mn, Mg, Mo, Ni, Na, Pb, Sr, Zn в минеральных удобрениях; измерение массовой доли As, Pb, Cd, Sn, Cr, Cu, Fe, Mn и Ni в лабораторных пробах пищевых продуктов и пищевого сырья атомно-абсорбционным методом.
- 12 Измерений массовой доли аминокислот в пробах комбикормов и сырья для их производства; измерений массовой доли органических кислот в безалкогольных и алкогольных напитках; измерения массовых концентраций аммония, калия, натрия, магния и кальция в винах, виноматериалах, коньяках и коньячных спиртах методами капиллярного электрофореза
- 13 Качественный и количественный анализ химических элементов Al, Mg, Si и Cl а также в диапазоне от Sc до U в твердых и порошкообразных пробах методом рентгеновской спектрометрии
- 14 Качественный и количественный элементный анализ металлов и сплавов, поверхностных пленок и покрытий, нетокопроводящих материалов (керамики, полимеров, стекол, почв, минералов, волокон) методом лазерного атомно-эмиссионного анализа.
- 15 Идентификация неизвестных компонентов органических веществ в жидких и газовых пробах и измерение концентраций этих компонентов (относительного или абсолютного количества елинипах концентрации или массы соответственно), анализ винодельческой продукции и контроль качества спиртов, водок, коньячных изделий методами газовой хроматографии И газовой хромато-массспектрометрии.
- 16 Изучение активности альфа- бэта- и гамма излучающих радионуклидов в продуктах питания, стройматериалах, биологических пробах, пробах почв, воды, воздуха и других объектах окружающей среды
- Электрохимические экспериментальные методы исследования жидких веществ и материалов (вольтамперометрия, потенциометрия, кулонометрия, хронопотенциометрия, циклическая и линейная развертки потенциала или тока, импульсные методы, импульсные аналитические методы исследований). Потенциометрические измерения растворов электролитов, тестирование, испытание и исследование различных химических источников тока (батарей топливных элементов и отдельных их компонентов, испытания литиевых и других аккумуляторов). Измерение в водных растворах активности ионов (рХ), рН, концентрации одно и двух валентных анионов и катионов (Cl –, Br –, I–, NO3, S2–, K+,

- Na+, (Ca2+ + Mg+), Ag2+), окислительно-восстановительных потенциалов (Eh) электродных систем, а также температуры для аналитического контроля воды, пищевых продуктов и сырья, фарм- и ветпрепаратов, объектов окружающей среды и др.
- 18 Измерения толщин пластин и пленок при помощи оптической рефлектометрии
- 19 Измерения удельной поверхности дисперсных и пористых материалов при помощи 4-х точечного метода БЭТ, а также удельной поверхности и пористости по полной изотерме.
- **20** Анализ содержания общего углерода, неорганического углерода и общего органического углерода в воде и водных растворах
- 21 Анализ содержания кислорода в исследуемой среде, контроль утилизации (поглощения) кислорода, исследование фотосинтетических параметров биообъектов в жидкой и газовой фазе (изучение митохондриального и клеточного дыхания, изучение взвесей изолированных хлоропластов, дисков листьев в приложениях по исследованию процессов фотосинтеза).
- 22 Синхронный термический анализ (термогравиметрия ТГ, дифференциальный термический анализ ДТА и дифференциальная сканирующая калориметрия ДСК) различных твердых веществ и материалов, измерения изменения массы и тепловых эффектов при температурах между 25°С и 1550°С.
- Организация и проведение практических занятий по современным методам физико-химического анализа веществ и материалов

Виды проводимых исследований с указанием параметров.

No	Вид исследования	Параметры
1.	Растровая электронная микроскопия различных микро- и нанообъектов (микро- и наночастицы, микро- и наноструктурированные объемные и тонкопленочные образцы) и микрозондовый анализ, определение локального элементного состава, построение элементных карт.	увеличение от x20 до x200000 (оптимальное до x50000) разрешение — 3 нм на тестовых образцах «золото на графите», обычно до 10 нм в зависимости от образца и используемого ускоряющего напряжения. анализируемые химические элементы — от бора (Z>4) разрешение EDX детектора 129 эВ на линии Кα(Mn), скорость счета до 100000 имп/с; пределы обнаружения 0.1 -100 % (точность снижается с уменьшением атомного номера элемента).
2.	ИК-Фурье спектроскопия (ИК- спектры пропускания, поглощения и отражения — диффузного и зеркального) различных органических и неорганических веществ в твердой и жидкой фазах	исследуемый спектральный интервал – от 7500 до 370 см ⁻¹ ; (дополнительный – до 30 см ⁻¹) Спектральное разрешение – 0,5 см ⁻¹ ; погрешность позиционирования волнового числа v – 0,01 см ⁻¹ ; фотометрическая погрешность v – 0,01%, скорость сканирования – от 0,1 до 3,75 см/сек; отношение сигнал/шум – 40000:1.
4.	Измерение спектров комбинационного рассеяния органических и неорганических образцов в твердом и жидком состоянии при лазерном возбуждении на конфокальном КР-спектрометре- микроскопе с возможностью измерения КР-спектров в точке (диаметр пятна — несколько мкм), сканирования вдоль заданной линии и картирования по поверхности, а также профилирования по глубине образца в конфокальном режиме с использованием автоматизированного столика микроскопа. Измерение спектров комбинационного и релеевского рассеяния при лазерном возбуждении, молекулярный спектральный анализ органических и неорганических соединений в твердом и жидком состоянии с высоким разрешением.	Спектральное разрешение — 3-5 см ⁻¹ ; Пространственное разрешение — лучше 1мкм. Спектральный диапазон — 70 — 4500см ⁻¹ ; Стабильность < 0,1 см ⁻¹ ; Используемые лазеры: 523 нм, 785 нм. Спектральное разрешение — лучше 0,8 см ⁻¹ ; Спектральный диапазон — 50 — 4000см ⁻¹ ; Система возбуждения: Nd:YAGлазер 1064 нм, 500 мВт; лазер 785 нм, 500мВт.
5.	Рентгенодифракционное кристаллографическое исследование порошков, керамики, поликристаллов и тонких пленок, объектов окружающей среды, природных ресурсов, химикатов, черных, цветных металлов, фарм. препаратов методом рентгеновской дифрактометрии.	Рентгеновская трубка - Си-анод, 2кВт.

		T
		независимым перемещением
		образца и детектора относительно
		осей Θ и 2Θ .
		Максимальные размеры образца –
		400мм х 500мм х 400мм.
		Скорость сканирования – 0.1 – 100
		град/мин (2 0).
		Монохроматизация – Ni-фильтр,
		графитовый монохроматор на
		отраженном пучке.
		База данных дифрактограмм –
		PDF 4+ 2011 на более 300000
		записей.
6.	Измерение толщин тонких плёнок, пластин и покрытий с	Диапазон измерения толщин –
	помощью многофункциональный измерительный комплекс	10нм – 50мкм;
	на базе оптоволоконного спектрометра	Разрешение по толщине пленки –
		1нм;
		Диапазон длин волн для
		измерений – 178-1100 нм;
		Разрешение оптическое – 2,4 нм.
7.	Измерение массовой концентрации неорганических и	Спектральный диапазон
/ .	органических примесей в воде, а также воздухе, почве,	оптического излучения,
	технических материалах, продуктах питания	используемого для анализа - 210 –
	флюориметрическим и фотометрическим методом.	
	Измерение спектров люминесценции и/или оптического	690 нм. Спектральное разрешение
	пропускания образцов. Измерение времени затухания	монохроматоров - не более 15 нм.
	люминесценции.	Погрешность установки
		монохроматоров - не более 3 нм.
		Объем анализируемой пробы в
		стандартной кювете К10 - 3 мл.
		Диапазоны измерения:
		массовой концентрации фенола в
		воде флюориметрическим
		методом от 0.01 до 25 мг/дм ³ ,
		коэффициента пропускания
		образца фотометрическим
		методом, от 10 до 100 % (абс.)
		Предел допускаемого значения
		основной погрешности:
		<u>^</u>
		для флюориметрического метода измерения массовой концентрации
		фенола в воде в диапазоне 0.01 ÷
		25 мг/дм ³ вычисляется по формуле
		∆c=0.004+0.10*С, мг/дм³, где С –
		действительное значение
		измеренной концентрации фенола, $M\Gamma/дM^3$.
		при фотометрических измерениях
		коэффициента пропускания в
		диапазоне 10 - 90 % (абс.) - 2 %
		(aốc.).
8.	Качественное и количественное определение	Фотометрический детектор:
	разнообразных веществ:	диапазон - 190-380 нм;
	Lustra o hanner a sulfation	

	перисанинеских и органинеских карионов и отможев	погреничесть плини волим ±5
	неорганических и органических катионов и анионов, аминокислот, витаминов, наркотиков, пищевых красителей и белков, определение состава проб веществ в водных и водно-органических растворах методом капиллярного электрофореза	погрешность длины волны - ±5 нм; ширина выделяемого спектрального интервала – 20 нм; Пределы обнаружения: бензойной кислоты – не более 0,8 мкг/см³, хлорид-ионов – не более 0,5 мкг/см³.
9.	Измерение концентраций компонентов жидких и газовых проб органических и неорганических соединений (относительного или абсолютного количества в единицах концентрации или массы соответственно), качественного и количественного анализа летучих органических веществ и неорганических газов методом газовой хромато-масс спектроскопии	Диапазон масс: не хуже 1,6 –1250 а.е.м. стабильность масс: не более 0.10 а.е.м. за 48 ч Линейность: не менее 106 скорость сканирования – 8 скоростей, макс. 12500 аем/мин. библиотека NIST 08 - более 220000 масс-спектров; Чувствительность при ионизации электронным ударом в режиме полного сканирования: 1 пикограмм октафторнафталина дает отношение сигнал/шум не хуже 250:1 на отдельной хроматограмме по массе m/z 272. Чувствительность в режиме регистрации отдельных ионов при ионизации электронным ударом: 20 фг октафторнафталина дает соотношение сигнал/шум не хуже 50:1 при массе m/z 272.
10.	Измерение среднего условного размера частиц, полной удельной поверхности, внешней удельной поверхности, объёма мезопор, объёма микропор, полного объёма пор, распределения пор по размерам, изотерм адсорбции и десорбции.	Диапазон измерения полной уд. поверхности, от 0,01 до 2000 м ² /г. Минимальный измеряемый объём пор, от 0,005 см ³ /г и выше. Минимальный измеряемый размер частиц, от 2нм и выше. Предел допускаемой относительной погрешности измерения удельной поверхности в режиме многократного измерения, не более 6%.
11.	Исследование содержания (качественного и количественного) катионов и анионов (F , Cl , NO_3 , NO_2 , Br , SO_4^{2-} , PO_4^{3-} , Li^+ , Na^+ , NH_4^+ , K^+ , Mg_2^+ , Ca_2^+ , Sr^+ и др.) в питьевых, минеральных и подземных водах.	Пределы обнаружения основных ионов (мг/л): Фторид – от 0,10; Хлорид – от 0,10; Нитрат – от 0,10; Сульфат – от 0,10; Фосфат – от 0,10; Натрий – от 0,10; Аммоний – от 0,10; Калий – от 0,10; Магний – от 1,0; Кальций – от 1,0;

		Стронций – от 1,0;
12.	Измерение содержания общего углерода (ОУ),	Диапазоны измерений:
	неорганического углерода (НУ) и общего органического	ОУ: 0 - 25000 мг/дм ³
	углерода (ООУ) в водных растворах.	$HУ:0 -35000 \text{ мг/ дм}^3$
		Предел детектирования - 4 мкг/
		дм ³
		Воспроизводимость -
		Коэффициент вариации CV в
		пределах 1,5%
13.	Изучение физико - химических свойств жидких и твердых	Спектральный диапазон 185-3300
	веществ методом спектрофотометрии в УФ- ИК- и видимом диапазоне длин волн от 190 до 3300 нм	HM.
	дианазоне длин волн от 190 до 5500 нм	Спектральное разрешение 0.1 нм.
		Монохроматор – двойной,
		предмонохроматор на базе
		вогнутой решетки и монохроматор
		Черны-Тернера с коррекцией
		аберраций. Детекторы - ФЭУ,
		InGaAs, PbS.
		Уровень рассеянного излучения –
		не более 0,00008% (220 нм),
		0,00005% (340 нм), 0,0005% (1420
		нм), 0,005% (2365 нм).
		Точность установки длин волн –
		не хуже \pm 0,2 нм (УФ и видимая
		области), не хуже ± 0.8 нм
		(ближняя ИК область).
		Воспроизводимость установки
		длины волны – не хуже ± 0,08 нм
		(УФ и видимая области), не хуже
		± 0,32 нм (ближняя ИК область).
		Дрейф нулевой линии – не более
		0,0002 ед. опт. плотн. /час.
		Шум - не более 0,00005 Abs (500 нм), 0,00008 Abs (900 нм), 0,00003
		Abs (1500 HM)
		(среднеквадратичное значение при
		0 Abs, щель 2 нм, 1 c) ед. опт.
		плотн.
14.	Измерение кривых намагничивания, гистерезисных кривых	Диапазон измерения величины
	намагничивания, гистерезисных кривых и температурной	магнитного момента 5 x 10 ⁻⁶ emu –
	зависимости намагниченности различных материалов.	10 emu.
		Погрешность измерения
		магнитного момента: 3 %.
		Температурный диапазон: 80 –
		380 K.
		Точность измерения температуры:
		± 0,3 K.
		Точность установки температуры:
		± 0,5 K.
		Макс. поле подмагничивания: ±
		2500 Э.
15.	Качественный и количественный элементный анализ	Диапазон измерений 10 ⁻⁴ % - 100,0

	химического состава различных твёрдых и порошкообразных веществ и материалов (металлы и сплавы, керамика, стекло, пластмассы, примеси в чистых материалах, прессованные порошки и т.д.), а также тонких плёнок и покрытий при изучении их состава и для поверхностного и послойного элементного анализа методом лазерно-эмиссионной спектроскопии	%. Источник возбуждения спектра – Nd:YAG лазер. Регистрация – одновременная на 6 ПЗС линеек. Возможность наблюдения пробы в режиме реального времени. Возможность наблюдения всего спектра в диапазонах 180-405 нм и 525-700 нм без перестройки оптической системы. Обратная линейная дисперсия, не хуже 0,8 нм/мм.
16.	Исследования изменения массы и тепловых эффектов и процессов, сопровождающихся выделением или поглощением тепла в твердых и порошкообразных образцах, при температурах между 25°C и 1550°C.	Точность измерения энтальпии: 2% Точность определения теплоемкости: ±2% (до 1400°С) Максимальная масса: 35000 мг Диапазон измерения массы: 0 35000 мг Температурный диапазон: 25°С - 1550°С Разрешение весов: 1 мкг Дрейф: < 10 мкг/час Чувствительность: 1 мкВт Точность определения температуры: 0,5 К
17.	Проведение исследований в магнитном поле с величиной индукции до 8 Тл.	Рабочая индукция 8 Тл, Однородность поля в объеме 1см ³ вблизи центра соленоида не хуже 10 ⁻³ Рабочий ток магнита, не более 120 А Время ввода до полного поля, не более 40 мин Охлаждение до рабочей температуры от комнатной, не более 20 часов
18.	Электрохимические и потенциометрические исследования электролитов; исследования быстро протекающих электрохимических процессов на границе электрод — электролит потенциостатическим, потенциодинамическим и импульсным методами; вольтамперометрия, потенциометрия, кулонометрия, хронопотенциометрия, циклическая и линейная развертки потенциала или тока, импульсные методы, импульсные аналитические методы исследований	Подключение ячейки - 2, 3, 4 электрода Максимальная поляризующая мощность: 50 Вт Максимальная нагрузочная мощность: 25 Вт Максимальное поляризующее напряжение: ± 14 В Диапазоны потенциала / их разрешения от старшего к младшему: 15 В / 500 мкВ 5 В / 160 мкВ 2.5 В / 80 мкВ 1 В / 32 мкВ Точность задания-регистрации потенциала: Не хуже 0.025 % от макс. Диапазона Максимальный поляризующий ток: ±

3 A
Максимальный нагрузочный ток: ±
1.5 A
Разрешение диапазонов тока: 1/30000
от максимума диапазона
Диапазоны тока и соответствующие
им максимальные погрешности:
3000 мА, - 0.1 %
200 мА, - 0.05%
20 мА, - 0.05%
2000 мкА, - 0.05%
200 мкА, - 0.05%
20 мкА, - 0.05%
2000 нА, - 0.1%
200 нА, - 0.1%

Алгоритм расчета цены типового договора на коммерческий заказ оказываемых услуг и проводимых исследований АЦКП ДФИЦ РАН

Стоимость услуг по проведению НИР и аналитико-измерительных услуг АЦКП ДНЦ РАН складывается из следующих величин:

- 1. Амортизация оборудования
- 2. Стоимость электроэнергии и прочих коммунальных расходов
- 3. Стоимость расходных материалов
- 4. Стоимость оплаты труда операторов измерительных и технологических установок.
- 5. Накладные расходы.

Себестоимость одного часа работы научного оборудования АЦКП ДФИЦ РАН

№	Наименование оборудования	Себестоимость
Π/Π		работы на
		оборудовании,
		руб. в час
	Сканирующий электронный микроскоп с микрозондовым анализатором ISYS LEO-1450 EDX System	1672
	Научно-исследовательский комплекс на базе ИК-Фурье спектрометра VERTEX 70, конфокального КР -спектрометр - микроскоп SENTERRA 785	1565
	Рентгеновский дифрактометр XRD-7000S	1373
	Компактный спектрометр SDH-I	301
	Спектрофлюориметрический анализатор Флюорат 02 Панорама	663
	Акустооптический спектрометр Рамановского рассеивания PAOC-3	595
	Хроматограф ионный жидкостной СТАЙЕР	622
	Универсальный масспектрометрический комплекс на базе времяпролетного масспектрометра MC-400	575
	Вибромагнитометр ВМ-21/77	509
	Система капиллярного электрофореза Капель-105	733

Многофункциональный измерительный комплекс на базе оптоволоконного спектрометра AvaSpec-2048-USB2	560
Сканирующий спектрофотометр UV-3600	652
Аргоновый лазер с автономной системой охлаждения, стабилизированным блоком питания, со стабилизацией мощности излучения	547
Комплекс для измерения текстурных характеристик дисперсных и пористых материалов Сорби-MS	597
Спектрометр лазерный эмиссионный для элементного анализа состава веществ и материалов SPECS LAES MATRIX	726
КР-модуль RAM II	1338
Атомно-абсорбционный спектрофотометр АА-7000	646
Газовый хроматограф с масс-селективным детектором МАЭСТРО МСД	732
Анализатор общего органического углерода TOC-Vcph	607
Система пробоподготовки образцов состоящая из прецизионной системы ионной полировки образцов и напылительной установки PIPS 691 и Q150T	618
Азотная ожижительная станция NL84a (Kelvin InC)	423
Перчаточный бокс с контролируемой атмосферой, модель Precise (Labconco Corporation)	362
Прибор синхронного термического анализа STA 449 F3 Jupiter (Netzsch)	936
Сверхпроводящая магнитная система CryoFreeMagn8T на базе криогенного рефрижератора Криотрейд	745

туководитель АЦКІІ ДФИЦ ГАІ	ı
д. фм. н.	(Гафуров М. М.)